
CSE DEPARTMENT, NCERC PAMPADY Page 1

NEHRU COLLEGE OF ENGINEERING AND RESEARCH CENTRE

(NAAC Accredited)
(Approved by AICTE, Affiliated to APJ Abdul Kalam Technological University, Kerala)

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

COURSE MATERIALS

CS 304 COMPILER DESIGN

VISION OF THE INSTITUTION

To mould true citizens who are millennium leaders and catalysts of change through excellence in

education.

MISSION OF THE INSTITUTION

NCERC is committed to transform itself into a center of excellence in Learning and Research in

Engineering and Frontier Technology and to impart quality education to mould technically competent

citizens with moral integrity, social commitment and ethical values.

We intend to facilitate our students to assimilate the latest technological know-how and to imbibe

discipline, culture and spiritually, and to mould them in to technological giants, dedicated research

scientists and intellectual leaders of the country who can spread the beams of light and happiness among

the poor and the underprivileged.

CSE DEPARTMENT, NCERC PAMPADY Page 2

ABOUT DEPARTMENT

 Established in: 2002

 Course offered : B.Tech in Computer Science and Engineering

M.Tech in Computer Science and Engineering

M.Tech in Cyber Security

 Approved by AICTE New Delhi and Accredited by NAAC

 Affiliated to the University of Dr. A P J Abdul Kalam Technological University.

DEPARTMENT VISION

Producing Highly Competent, Innovative and Ethical Computer Science and Engineering Professionals

to facilitate continuous technological advancement.

DEPARTMENT MISSION

1. To Impart Quality Education by creative Teaching Learning Process

2. To Promote cutting-edge Research and Development Process to solve real world problems with

emerging technologies.

3. To Inculcate Entrepreneurship Skills among Students.

4. To cultivate Moral and Ethical Values in their Profession.

PROGRAMME EDUCATIONAL OBJECTIVES

PEO 1: Graduates will be able to Work and Contribute in the domains of Computer Science and Engineering

through lifelong learning.

PEO 2: Graduates will be able to Analyze, design and development of novel Software Packages,
Web Services, System Tools and Components as per needs and specifications.

PEO 3: Graduates will be able to demonstrate their ability to adapt to a rapidly changing environment

by learning and applying new technologies.

PEO 4: Graduates will be able to adopt ethical attitudes, exhibit effective communication skills, Team

work and leadership qualities.

Free Hand

CSE DEPARTMENT, NCERC PAMPADY Page 3

PROGRAM OUTCOMES (POS)

Engineering Graduates will be able to:

1. Engineering knowledge: Apply the knowledge of mathematics, science, engineering

fundamentals, and an engineering specialization to the solution of complex engineering

problems.

2. Problem analysis: Identify, formulate, review research literature, and analyze complex

engineering problems reaching substantiated conclusions using first principles of

mathematics, natural sciences, and engineering sciences.

3. Design/development of solutions: Design solutions for complex engineering problems and

design system components or processes that meet the specified needs with appropriate

consideration for the public health and safety, and the cultural, societal, and environmental

considerations.

4. Conduct investigations of complex problems: Use research-based knowledge and research

methods including design of experiments, analysis and interpretation of data, and synthesis of

the information to provide valid conclusions.

5. Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern

engineering and IT tools including prediction and modeling to complex engineering activities

with an understanding of the limitations.

6. The engineer and society: Apply reasoning informed by the contextual knowledge to assess

societal, health, safety, legal and cultural issues and the consequent responsibilities relevant

to the professional engineering practice.

7. Environment and sustainability: Understand the impact of the professional engineering

solutions in societal and environmental contexts, and demonstrate the knowledge of, and need

for sustainable development.

8. Ethics: Apply ethical principles and commit to professional ethics and responsibilities and

norms of the engineering practice.

9. Individual and team work: Function effectively as an individual, and as a member or leader

in diverse teams, and in multidisciplinary settings.

10. Communication: Communicate effectively on complex engineering activities with the

engineering community and with society at large, such as, being able to comprehend and

write effective reports and design documentation, make effective presentations, and give and

receive clear instructions.

11. Project management and finance: Demonstrate knowledge and understanding of the

engineering and management principles and apply these to one’s own work, as a member and

leader in a team, to manage projects and in multidisciplinary environments.

12. Life-long learning: Recognize the need for, and have the preparation and ability to engage in

independent and life-long learning in the broadest context of technological change.

PROGRAM SPECIFIC OUTCOMES (PSO)

PSO1: Ability to Formulate and Simulate Innovative Ideas to provide software solutions for Real-

time Problems and to investigate for its future scope.

PSO2: Ability to learn and apply various methodologies for facilitating development of high quality

System Software Tools and Efficient Web Design Models with a focus on performance

CSE DEPARTMENT, NCERC PAMPADY Page 4

optimization.

PSO3: Ability to inculcate the Knowledge for developing Codes and integrating hardware/software

products in the domains of Big Data Analytics, Web Applications and Mobile Apps to create

innovative career path and for the socially relevant issues.

COURSE OUTCOMES

C311.1 To acquire the knowledge on concepts and different phases of

compilation with compile time error handling.

C311.2 To design lexical analyzer for a language and can represent language

tokens using regular expressions, context free grammar and finite

automata

C311.3 To acquire the knowledge on top down and bottom up parsers, and can

develop appropriate parser to produce parse tree representation of the

input.

C311.4 To generate intermediate code for statements in high level language.

C311.5 To design syntax directed translation schemes for a given context free

grammar

C311.6 To apply optimization techniques to intermediate code and generate

machine code for high level language program.

MAPPING OF COURSE OUTCOMES WITH PROGRAM OUTCOMES

CO’S PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12

C311.1 3 3

C311.2 2 3 3 2 3

C311.3 3 3 3

C311.4 2 3 3 3 3

C311.5 3 3 3 3

C311.6 3 3 3 3

C311 3 3 3 3

CO’S PSO1 PSO2 PSO3

C311.1 3

C311.2 3 3

C311.3 3 3

C311.4 3

C311.5 3

C311.6 3 3

C311 3 3 3

Note: H-Highly correlated=3, M-Medium correlated=2, L-Less correlated=1

CSE DEPARTMENT, NCERC PAMPADY Page 5

SYLLABUS

CSE DEPARTMENT, NCERC PAMPADY Page 6

CSE DEPARTMENT, NCERC PAMPADY Page 7

QUESTION BANK

MODULE I

Q:N

O:

QUESTIONS

CO

K

L

PAG

E

NO:

1 Construct a parse tree for position:=initial+rate *100 CO

1

K5 13

2 With neat sketch explain the phases of a compiler. CO

1

K3 21

3 Discuss in detail about the necessity of compiler writing tools. CO

1

K2 32

4 With neat sketch explain the working of bootstrapping CO

1

K3 34

5 Explain the role of lexical analyzer. CO

1

K2 37

6 Discuss about the functions of lexical analyzer. CO

1

K2 38

7 Define the terms Tokens, Patterns and Lexemes. CO

1

K3 39

8 Identify the tokens and lexemes of the given expression.

Printf(“Total=%d\n”, score);

CO

1

K2 40

9 Explain input buffering. CO

1

K2 44

10 Explain about regular expression in detail. CO

1

K4 50

11 Explain Regular Definition with notational short hands. CO

1

K2 52

MODULE II

1 Define syntax analysis with example CO

2

K2 62

2 Elucidate in detail about the context free grammar. CO

2

K4 68

CSE DEPARTMENT, NCERC PAMPADY Page 8

3 Derive the string –(id+id) from the grammar E->E+E|E*E|(E)|-E|id CO

2

K2 71

4 Derive the string “aabbabba” for the LMD and RMD using context

free grammar.

CO

2

K5 73

5 Construct a parse tree for the string id+id*id and grammar G is E-

>E*E|E+E|id.

CO

2

K5 75

6 Elucidate in detail about Ambiguity. CO

2

K3 77

7

CO

2

K5 80

8

CO

2

K2 85

9 Discuss in detail about the Recursive Descent Parsing. CO

2

K2 88

10 Narrate the properties of predictive parser. CO

2

K3 90

CSE DEPARTMENT, NCERC PAMPADY Page 9

11 Construct the transition diagram for the predictive parser of the

grammar.

CO

2

K2 92

12 Explain in detail about Non Recursive Predictive Parser. CO

2

K2 94

13 Explain the FIRST and FOLLOW with example CO

2

K2 97

14

CO

2

K2 106

MODULE III

1 Discuss in detail about bottom up parsing. CO

3

K3 109

2 Discuss the basic properties of shift reduce parsing. CO

3

K3 112

3

CO

3

K2 116

CSE DEPARTMENT, NCERC PAMPADY Page 10

4 Discuss in detail about operator precedence parser. CO

3

K3 120

5

CO

3

K5 129

6 Discuss in detail about LR Parser. CO

3

K3 130

7

CO

3

K5 142

8 Explain canonical LR parser. CO

3

K2 151

9 Explain canonical LALR parser. CO

3

K2 159

MODULE IV

1 Briefly explain syntax directed translation. CO

4

K2 171

2 Explain the concept of synthesized attribute. CO

4

K1 175

3 Briefly explain about bottom up evaluation of S-attribute CO

4

K2 187

CSE DEPARTMENT, NCERC PAMPADY Page 11

definitions.

4 Describe L-attributed definition. CO

4

K3 191

5 Explain the working of Top Down Translation. CO

4

K1 194

6 Explain the basic bottom up evaluation of inherited attributes. CO

4

K2 197

7 Define type checking. CO

4

K3 202

MODULE V

1 Describe Runtime Environment in detail. CO

5

K4 212

2 Explain about Activation Trees. CO

5

K2 214

3 Write a short note on storage organization. CO

5

K3 218

4 State storage allocation strategies. CO

5

K2 221

5 Write about intermediate code generation. CO

5

K3 231

6 Briefly explain about intermediate language. CO

5

K2 231

7 What are the main categories of three address code? Explain in

detail.

CO

5

K2 235

8 Briefly explain about Assignment Statements. CO

5

K3 244

MODULE VI

1 Describe Code Optimization in detail. CO

5

K4 251

2 Explain about basic blocks and aviation graphs. CO

5

K2 256

3 Write a short note on function preserving transformation. CO

5

K3 260

CSE DEPARTMENT, NCERC PAMPADY Page 12

4 State common sub expression elimination. CO

5

K2 260

5 Write about copy propagation CO

5

K3 261

APPENDIX 1

CONTENT BEYOND THE SYLLABUS

S:NO; TOPIC PAGE NO:

1 ANTLR 263

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

CSE DEPARTMENT , NCERC PAMPADY Page 263

ANTLR

ANTLR (ANother Tool for Language Recognition) is a powerful parser generator for reading,

processing, executing, or translating structured text or binary files. It's widely used to build

languages, tools, and frameworks. From a grammar, ANTLR generates a parser that can build

and walk parse trees.

ANTLR takes as input a grammar that specifies a language and generates as output source

code for a recognizer of that language. While Version 3 supported generating code in

the programming languages Ada95, ActionScript, C, C#, Java, JavaScript, Objective-

C, Perl, Python, Ruby, and Standard ML, the current release at present only targets Java, C#,

C++,JavaScript, Python, Swift, and Go. A language is specified using a context-free

grammar expressed using Extended Backus–Naur Form (EBNF).

ANTLR can generate lexers, parsers, tree parsers, and combined lexer-parsers. Parsers can

automatically generate parse trees or abstract syntax trees, which can be further processed with

tree parsers. ANTLR provides a single consistent notation for specifying lexers, parsers, and tree

parsers.

By default, ANTLR reads a grammar and generates a recognizer for the language defined by the

grammar (i.e., a program that reads an input stream and generates an error if the input stream

does not conform to the syntax specified by the grammar). If there are no syntax errors, the

default action is to simply exit without printing any message. In order to do something useful

with the language, actions can be attached to grammar elements in the grammar. These actions

are written in the programming language in which the recognizer is being generated. When the

recognizer is being generated, the actions are embedded in the source code of the recognizer at

the appropriate points. Actions can be used to build and check symbol tables and to emit

instructions in a target language, in the case of a compiler.

Other than lexers and parsers, ANTLR can be used to generate tree parsers. These are

recognizers that process abstract syntax trees, which can be automatically generated by parsers.

These tree parsers are unique to ANTLR and help processing abstract syntax trees.

ANTLR 3 and ANTLR 4 are free software, published under a three-clause BSD License. Prior versions were

released as public domain software Documentation, derived from Parr's book The Definitive ANTLR 4

Reference, is included with the BSD-licensed ANTLR 4 source.

Various plugins have been developed for the Eclipse development environment to support the ANTLR

grammar, including ANTLR Studio, a proprietary product, as well as the "ANTLR 2" and "ANTLR 3" plugins

for Eclipse hosted on SourceForge

https://en.wikipedia.org/wiki/Formal_grammar
https://en.wikipedia.org/wiki/Source_code
https://en.wikipedia.org/wiki/Source_code
https://en.wikipedia.org/wiki/Recognizer
https://en.wikipedia.org/wiki/Programming_language
https://en.wikipedia.org/wiki/Ada95
https://en.wikipedia.org/wiki/ActionScript
https://en.wikipedia.org/wiki/C_(programming_language)
https://en.wikipedia.org/wiki/C_Sharp_(programming_language)
https://en.wikipedia.org/wiki/Java_(programming_language)
https://en.wikipedia.org/wiki/JavaScript
https://en.wikipedia.org/wiki/Objective-C
https://en.wikipedia.org/wiki/Objective-C
https://en.wikipedia.org/wiki/Perl
https://en.wikipedia.org/wiki/Python_(programming_language)
https://en.wikipedia.org/wiki/Ruby_(programming_language)
https://en.wikipedia.org/wiki/Standard_ML
https://en.wikipedia.org/wiki/Swift_(programming_language)
https://en.wikipedia.org/wiki/Go_(programming_language)
https://en.wikipedia.org/wiki/Context-free_grammar
https://en.wikipedia.org/wiki/Context-free_grammar
https://en.wikipedia.org/wiki/Extended_Backus%E2%80%93Naur_Form
https://en.wikipedia.org/wiki/Lexical_analysis
https://en.wikipedia.org/wiki/Parser
https://en.wikipedia.org/w/index.php?title=Tree_parser&action=edit&redlink=1
https://en.wikipedia.org/w/index.php?title=Lexer-parser&action=edit&redlink=1
https://en.wikipedia.org/wiki/Parse_tree
https://en.wikipedia.org/wiki/Abstract_syntax_tree
https://en.wikipedia.org/wiki/Free_software
https://en.wikipedia.org/wiki/BSD_License
https://en.wikipedia.org/wiki/Public_domain_software
https://en.wikipedia.org/wiki/Eclipse_IDE
https://en.wikipedia.org/wiki/ANTLR_Studio
https://en.wikipedia.org/wiki/Proprietary_software
https://en.wikipedia.org/wiki/SourceForge

